

ALIMENTAÇÃO DE *GEOPHAGUS BRASILIENSIS* E *AUSTRALOHEROS CF. IPATINGUENSIS* (PERCIFORMES, CICHLIDAE) NO LAGO GAMBAZINHO, PARQUE ESTADUAL DO RIO DOCE, MINAS GERAIS

C.C.T. Lucas¹

A.P.P. Gomes¹; E.N. Fragoso - Moura¹; P.M. Maia - Barbosa¹; F.A.R. Barbosa¹

Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Av. Antônio Carlos, 6627-Belo Horizonte/MG CEP: 31.270 - 910 31 3409 - 2587 cinthia.tavares@yahoo.com.br

INTRODUÇÃO

A fauna neotropical de peixes de água doce é a mais diversificada e rica do mundo com cerca de 4.475 espécies válidas (17). No Brasil existem aproximadamente 2.122 espécies (3) A Mata Atlântica está entre os biomas mais ameaçados do Brasil, sendo considerado prioritário para a conservação da sua altíssima biodiversidade em toda a região neotropical. O vale do médio rio Doce (MG) abriga mais de 60% da biodiversidade da Mata Atlântica, incluindo uma percentagem ainda maior das espécies endêmicas a esse bioma (1). Ainda segundo estes autores, o Parque Estadual do Rio Doce (PERD) constitui o maior remanescente de Mata Atlântica em Minas Gerais, totalizando 36,000 ha de florestas, em sua maior parte secundária, entremeadas por cerca de 50 lagos que integram o Sistema Lacustre do médio rio Doce (130 lagos aproximadamente), nos mais variados estágios de evolução. Estes lagos originaram - se no Pleistoceno (4), quando tornaram - se sistemas independentes do rio principal. Apesar de localizados numa Unidade de Conservação, os lagos sofreram a introdução de peixes exóticos (18), sendo o lago Gambazinho um dos três lagos dentro do PERD que conservam somente espécies nativas (14).

O conhecimento da ictiofauna é importante para que se possam tomar medidas quanto à utilização e conservação desses ambientes naturais. O estudo da alimentação natural dos peixes nos fornece informações a respeito da complexidade da cadeia trófica e como as espécies utilizam os recursos alimentares disponíveis, sendo de vital importância na elaboração de estratégias de manejo das populações naturais (11).

Geophagus brasiliensis (Quoy & Gaimard, 1824), conhecido popularmente como Cará, é um ciclídeo de água doce, bentopelágico, que ocorre nos países tropicais da América do Sul (7) e, segundo Godinho (8), é encontrado tanto em rios como em lagoas do Brasil, da Amazônia ao Rio Grande do Sul. Seu hábito alimentar é considerado onívoro, tendo

vários aspectos da sua alimentação já estudados em outros ambientes.

Australoheros ipatinguensis Ottoni & Costa, 2008 é também um ciclídeo de água doce, bentopelágico (7), encontrado na bacia do rio Doce (MG). Descrito recentemente, segundo Ottoni & Costa (16), ainda se conhece muito pouco de sua biologia e ecologia.

Em relação à bacia do rio Doce, localizada no leste do Brasil, são espécies nativas na qual se encontram preservadas no lago Gambazinho do Parque Estadual do Rio Doce e ameaçada, com risco de desaparecer em outros lagos do Parque e entorno devido à introdução de espécies piscívoras como o *Cichla kelberi* (Tucunaré) e *Pygocentrus nattereri* (Piranha), que podem utilizá - las como presas. No lago Carioca (PERD), estas espécies podem ser consideradas extintas de acordo com a literatura (20, 9, 13, 10, 6).

OBJETIVOS

Este trabalho teve como objetivo estudar a dieta das duas espécies de ciclídeos (*G. brasiliensis* e *A.* cf. *ipatinguensis*) do lago Gambazinho - médio rio Doce, MG, a fim de verificar os itens alimentares da dieta e relações ecológicas relacionadas à alimentação dessas espécies.

MATERIAL E MÉTODOS

O Parque Estadual do Rio Doce (PERD) está localizado no trecho médio da bacia do rio Doce, em Minas Gerais (19º 29'24"-19º 48'18" S; 42º 28'18"-42º 38'30" W), e inserido no bioma Mata Atlântica (1). O lago Gambazinho está localizado em área protegida (PERD) sendo um dos poucos ambientes do parque com sua ictiofauna totalmente nativa. A área do lago é de 10,4 ha e 10,3 m de profundidade máxima (2). Possui formato alongado com temperatura na coluna

1

d'água variando entre 23,7 e 31,1 0 C e a concentração de oxigênio dissolvido de 2,0 a 9,7 mg/l (2).

Em quatro estações de coleta foram utilizadas redes de emalhar de diferentes tamanhos de malha (3 à 12 cm entrenós opostos) e esforço de pesca de 24 horas. Além de redes, foram utilizadas armadilhas (covos), redes de arrasto, peneira, puçá e tarrafa a fim de se obter uma amostra representativa do ambiente e minimizar o efeito de seletividade, buscando coletar também exemplares de menor porte.

As coletas bimestrais foram realizadas no período de setembro de 2006 a setembro de 2007 e em janeiro e dezembro de 2008, totalizando nove coletas. Os exemplares coletados foram acondicionados em sacos plásticos, devidamente identificados e congelados. No laboratório foi realizada a biometria e dissecação dos espécimens, em balança de precisão (0,01g) e medição do comprimento total e padrão com o auxílio de um ictiômetro milimetrado. Por meio de incisão ventral, os peixes foram dissecados para determinação do grau de repleção estomacal. Posteriormente, os estômagos foram pesados e analisados em placas de Petri sob estereomicroscópio. Os itens alimentares foram identificados até o menor nível taxonômico possível.

Para a avaliação do hábito alimentar foram dissecados os estômagos que continham algum conteúdo em seu interior. Os itens alimentares foram identificados e tiveram seu peso úmido determinado em balança analítica (0,0001g). Para cada item, foram calculados a freqüência de ocorrência (Fi = n^0 de estômagos em que ocorreu o item i/ n^0 total de estômagos com alimento) e seu peso relativo (Pi = peso do item i/ peso total de todos os itens), combinados no Índice Alimentar (IAi), segundo Kawakami & Vazzoler (12).

Para a verificação da possível ocorrência de sobreposição alimentar entre as espécies foi empregado o Índice de Sobreposição de Morisita modificado por Schroeder - Araújo (19), sendo considerados valores significativos de sobreposição alimentar aqueles acima de $\mathrm{SA}=0,60$.

RESULTADOS

Foram coletados 113 exemplares de ciclídeos do lago Gambazinho, tendo sido analisados 54 estômagos, sendo 29 estômagos de *Geophagus brasiliensis* e 25 de*Australoheros* cf. *ipatinquensis*.

A alimentação de *G. brasiliensis* e *A.* cf. *ipatinguensis* é similar, sendo composta por sedimento, insetos não identificados, chironomídeo, camarão (Palaemonidae), fragmento de peixe, escama de peixe e matéria orgânica, sendo que a última espécie alimentou - se ainda de Odonata. Segundo Godinho (8), *Geophagus brasiliensis* alimenta - se de larvas de mosquitos, pequenos crustáceos, insetos terrestres e larvas de libélula, além de ingerir muito sedimento. Foram considerados como itens mais importantes na dieta de *G. brasiliensis* escama de peixe (IAi= 0,77), camarão (IAi= 0,09) e insetos (IAi= 0,07), enquanto que para *A.* cf. *ipatinguensis* foi principalmente camarão (IAi= 0,91).

Apesar dos itens alimentares serem praticamente os mesmos, a sobreposição alimentar foi baixa entre as duas espécies (SA=0,13). Vale ressaltar que as escamas identificadas podem ser de peixes que foram ingeridos, mas também há a possibilidade de terem sido obtidos no sedimento, visto

que o item fragmento de peixe (IAi= 0,003) não foi expressivo na dieta de G. brasiliensis. Segundo Espírito Santo et al., (5), os peixes têm a capacidade de variar muito sua dieta. Matthews (15) sugere que, em níveis moderados de disponibilidade de recursos, as espécies de peixes podem divergir na sua exploração utilizando o recurso ao qual estão mais adaptadas e quando os recursos são super abundantes, as espécies podem utilizá - los de forma oportunista sem haver competição. Apesar de encontrada muita matéria orgânica nos estômagos das duas espécies de ciclídeos, esses dados não entraram no cálculo do índice alimentar, devido a inviabilidade de identificar a origem da matéria orgânica, por estar em um estado avançado de digestão. Podemos considerar, portanto, que a baixa sobreposição alimentar encontrada em G. brasiliensis eA. cf. ipatinquensis, permite que essas espécies mesmo sendo próximas, possam conviver em um mesmo ambiente partilhando os recursos.

CONCLUSÃO

As duas espécies de ciclídeos estudadas apresentaram dieta muito similar em relação a sua composição, porém divergem quanto à importância dos itens ingeridos. A baixa sobreposição alimentar reflete este fato e aponta para uma estratégia de se evitar a competição entre as espécies, visto que as duas espécies estão associadas ao substrato, explorando o mesmo ambiente.

Agradecimentos

Às equipes das coletas de campo do PELD/UFMG pelo auxílio nas amostragens, ao Parque Estadual do Rio Doce pelo apoio logístico, aos colegas do laboratório de Limnologia da UFMG pelo auxílio nas análises dos dados e identificação dos itens alimentares, ao Prof. Dr. Mauro Luís Triques pela confirmação das espécies.

Financiamento: PELD/UFMG - CNPq.

REFERÊNCIAS

- 1. Barbosa, F.A.R. & Moreno, P. Mata Atlântica e Sistema Lacustre do Rio Doce. In: Seeliger, U.; Cordazzo, C.; Barbosa, F. (Eds.). Os Sites e o Programa Brasileiro de Pesquisas Ecológicas de Longa Duração. 2002. p.69 81.
- 2. Brito, S.L. Interações bióticas e abióticas das populações zooplanctônicas das lagoas Carioca e Gambazinho (Parque Estadual do Rio Doce-Minas Gerais) e suas implicações na estrutura do tamanho de corpo. Belo Horizonte, MG, UFMG. 2005. 80 p.
- 3. Buckup, P.A.; Menezes, N.A.; Ghazzi, M.S. (Eds.) Catálogo das espécies de peixes de água doce do Brasil. Série Livros 23. Rio de Janeiro: Museu Macional (UFRJ). 2007. 195p.
- 4. De Meis, M.R.M. 1978. Estratigrafia preliminar para a seqüência de Colmatagem dos lagos Neoquaternários do médio vale do rio Doce. *An. Acad. Brasil. Ciênc.*, 50 (1): 125 126.
- 5. Espírito Santo, H.M.V.; Giacomini, H.C.; Latini, A.O. Pode a plasticidade de dieta aumentar a persistência de populações nativas de peixes perante o impacto da invasão por

- populações não nativas de peixes? Anais do VI Congresso de ecologia do Brasil, Fortaleza, Ceará. 2003, p. 303 304. 6. Fragoso Moura, E.N.; Barbosa, F.A.R.; Maia Barbosa, P.M.; Santos, T.R.M.; Gomes, A.P.P.; Lucas, C.C.T.; Ribeiro, G.V.T.; Gontijo, P.B. Estudo da ictiofauna das lagoas Carioca e Gambazinho médio rio Doce MG, visando a implantação experimental de um plano de manejo para as espécies invasoras. In: Universidade Federal de Minas Gerais/ PELD. Mata Atlântica e o Sistema Lacustre do Médio Rio Doce.Site 4 PELD/CNPq-Relatório Anual, 2008, Belo Horizonte.
- 7. Froese, R. & Pauly, D. 2009. FishBase disponível em http://www.fishbase.org/Summary/species
 Summary.php?ID=4751&genusname=Geophagus&speciesname=brasiliensis.html. Acesso em 28/05/2009.
- 8. Godinho, A.L. Peixes do parque Estadual do Rio Doce. Belo Horizonte: instituto Estadual de Florestas/Universidade Federal de Minas Gerais, 1996. 48 p. 9. Godinho, A.L.; Fonseca, M.T.; Araújo, L.M. The Ecology of Predator Fish Introductions: The case of Rio Doce Valley Lakes. In: Ecology and Human Impacton Lakes and Reservoirs in Minas Gerais R.M.; Giani, A. &von Sperling-SEGRAC-Belo Horizonte (MG). 1994. 77 83 pp. 193p.
- 10. Gomes, A.P.P.; Gontijo, P.B.; Santos, T.R.M.; Fragoso Moura, E.N.; Maia Barbosa, P.M.; Barbosa, F.A.R. Efeitos de duas décadas de peixes exóticos na lagoa Carioca, Parque Estadual do Rio Doce, MG. Anais do VIII Congresso de Ecologia do Brasil, Caxambu, MG. 2007.
- 11. Hahn, N.S.; Fugi, R.; Almeida, V.L.L.; Russo, M. & Loureiro, V.E. Dieta e atividade alimentar de peixes do reservatório de Segredo. In: Agostinho, A.A.; Gomes, L.C. (Eds.) Reservatório de Segredo: Bases ecológicas para o manejo. Maringá: EDUEM. 1997. p.141 162.
- 12. Kawakami, E. & Vazzoler, G. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. *Boletim instituto Oceanográfico*, 29: 205 207. 1980.

- 13. Latini, A.O.; Pereira, T.L.; Latini, R.O.; Giacomini, H.C.; Lima Junior, D.P.; Oporto, L.T.; Espírito Santo, H.M.V. Distribuição e efeitos de peixes exóticos sobre a ictiofauna nativa dos lagos do Médio Rio Doce, MG, Brasil. In: Rocha, O.; Espindola, E.L.G.; Fenerich Verani, N.; Verani, J.R. & Rietzler, A.C. (Orgs.). Espécies invasoras em águas doces: estudo de casos e propostas de manejo. São Carlos EDUFSCar, 2005. p 99 118.
- 14. Latini, A.O.; Lima Junior, D.P.; Giacomini, H.C.; Latini, R.O.; Resende, D.C.; Espírito Santo, H.M.V.; Barros, D.F.; Pereira, T.L. Alien fishes in lakes of the Doce river basin (Brazil): range, new occurrences and conservation of native communities. *Lundiana*, v. 5, n. 2 p. 135 142. 2004.
- 15. Matthews, W.J. Patterns in freshwater fish ecology. Chapman Hall. New York, 1998. 756p.
- 16. Ottoni, F.P. & Costa, W.J.E.M. Taxonomic revision of the genus Australoheros Rícan & Kullander, 2006 (Teleostei: Cichlidae) with descriptions of nine new species from southeastern Brazil. *Vertebrate Zoology*. 58(2): 207-232. 2008.
- 17. Reis, R.O; Kullander, S.O., Ferraris Jr. C.J., Check list of the freshwater fishes of South and Central America. Porto Alegre: EDIPUCRS. 2003.742p.
- 18. Rocha, O.; Espíndola, E.L.G.; Fenerich Verani, N.; Verani, J. R.; Rietzler, A.C. O problema das invasões biológicas em águas doces. In: Rocha, O.; Espindola, E.L.G; Fenerich Verani, J.R. & Rietzler, A.C. (Orgs.). Espécies Invasoras em águas doces: estudos de caso e propostas de manejo. São Carlos EDUFSCar, 2005. 1: 09 12.
- 19. Schroeder Araújo, L. T. Alimentação dos peixes da Represa de Ponte Nova, Alto Tietê. São Paulo, SP, USP. 1980. 91 p.
- 20. Sunaga, T. & Verani, J.R. 1991. The fish communities of the lakes in Rio Doce Valley, Northeast Brazil. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, v. 24, p. 2563 2566.