

ASSEMBLÉIA DE LARVAS DE TRICHOPTERA DE UMA LAGOA ARTIFICIAL EM ÁREA DE CERRADO

Priscilla Andrade Teles¹

Aline Leles Nascimento ²; Fernanda Alves Martins ³; Flávio Roque Camelo ⁴

¹Graduação em Ciências Biológicas-Universidade Federal de Uberlândia. ²Graduação em Ciências Biológicas-Universidade Federal de Uberlândia ³Mestrado em Ecologia e Conservação de Recursos Naturais-Universidade Federal de Uberlândia ⁴Graduação em Ciências Biológicas-Universidade Federal de Uberlândiapriandradebio@yahoo.com.br ¹

INTRODUÇÃO

Os macroinvertebrados de água doce constituem um grupo diversificado de organismos que habitam tanto ambientes lênticos (reservatórios, lagos e lagoas) como lóticos (rios, riachos e córregos) (Hauer & Resh 1996, Merrit & Cummins 1996), de grande importância ecológica em riachos, participando das cadeias alimentares e sendo o elo entre os recursos basais (detritos e algas) e os peixes. Sua grande diversidade e ocorrência em vários tipos de habitats também são fatores que os levam a ter papel central no estudo da ecologia de ambientes aquáticos (Hynes 1970, Allan 1995). A comunidade bentônica é considerada a menos estudada dentre as comunidades aquáticas, sendo composta por diferentes grupos taxonômicos e distribuídos em diversos tipos de substrato (Takeda et al., 997).

A ordem Trichoptera Kirby é uma das maiores entre os insetos aquáticos. Possui grande riqueza taxonômica em consequência de ampla diversidade ecológica, podendo viver na maioria dos habitats de água doce: córregos de nascente, rios, lagos, pântanos e lagoas temporárias (Merrit & Cummins 1996). Os Trichoptera representam um importante componente dos ecossistemas de água doce, participando da transferência de energia e nutrientes através de todos os níveis tróficos (Wiggins 1996), apresentando pouca seletividade alimentar, mas com alta especialização na obtenção de alimento (Merrit & Cummins 1996). Apresentam grande diferença específica em relação à tolerância aos poluentes e outros tipos de distúrbios ambientais, o que dá ao grupo grande importância em programas de monitoramento biológico (Ross 1967, Rosenberg & Resh 1993). Essa ordem apresenta uma fauna mundial de 13 mil espécies descritas, sendo que no Brasil atualmente estão registradas 400 espécies, no entanto o grupo ainda é pouco estudado. Na coleta de Trichoptera é importante que a amostragem seja realizada de forma padronizada a fim de reduzir o número de variáveis entre as amostras. Os coletores que empregam substrato artificial possuem a vantagem de reduzir significativamente os custos operacionais em função da facilidade de confecção, simplicidade de manuseio e custo reduzido (Silveira & Queiroz, 2006) e são especialmente eficientes para serem usados em habitats lênticos (águas paradas) e em locais de deposição (estuários, por exemplo), o que se aplica perfeitamente às condições encontradas nesse estudo.

OBJETIVOS

O objetivo do estudo foi caracterizar a assembléia de larvas de Trichoptera de uma lagoa artificial de uma área de Cerrado do Clube Caça e Pesca Itororó no município de Uberlândia - MG.

MATERIAL E MÉTODOS

Para a coleta dos imaturos foram utilizados 36 substratos artificiais, construídos com garrafas PET, cortadas em tiras para permitir a entrada dos organismos, e bucha vegetal (Luffa cylindrica M. Roem), utilizada para reter os sedimentos e servir como local de colonização (protocolo de Volkmer - Ribeiro et al., 2004). Lastros foram adicionados para manter os substratos no leito da lagoa. Nas três margens acessíveis da lagoa foram delimitados três setores, denominados Margem, Cerca e Osso. Em cada setor, quatro substratos foram distribuídos sistematicamente, presos a estacas nas margens e deixados por 42 dias. Posteriormente foram retirados, lavados e pré - triados em campo. As paredes das garrafas foram investigadas, assim como as buchas, abertas e lavadas. Os organismos aderidos foram removidos com pinça. O sedimento proveniente das lavagens foi transferido para sacos plásticos individuais, etiquetados e fixados em álcool 70% e posteriormente triado com o auxílio de um estereomicroscópio. Para cada amostra, todos os organismos foram armazenados em frascos individuais devidamente rotulados e fixados em álcool a 70% e posteriormente identificados a menor nível taxonômico possível, com o auxílio

1

da Chave de identificação de Costa et al., (2006).

RESULTADOS

Foram encontrados 19 indivíduos, pertencentes à duas famílias. Dois dos indivíduos encontrados pertencem à família Philopotamidae e os 17 restantes são pertencentes à família Hydropsychidae, o que sugere a preferência da última pelo substrato artificial. No Brasil, autores com trabalhos sobre comunidades lóticas em diferentes ecossistemas aquáticos têm reportado a família Hydropsychidae como a mais abundante (103 espécies) entre os Trichoptera (Uieda e Gajardo, 1996; Bispo e Oliveira, 1998). Oliveira e Fröehlich (1996), em estudos com dois gêneros de Hydropsychidae (Leptonema e Smicridea) no "Cerrado" observaram que as larvas em seus primeiros estádios alimentam - se de sedimentos e algas capturadas em sua rede, porém, as de último estádio ingerem pequenos macroinvertebrados aquáticos e fragmentos vegetais, classificando - os como generalistas, o que contribui para maior abundância em diferentes ambientes aquáticos. Uma especulação para o resultado encontrado é a seletividade dos substratos artificiais, uma vez que excluem alguns organismos que não conseguem colonizá - lo (Silveira & Queiroz 2006).

Outro tópico de discussão se baseia no fato de o substrato artificial imitar, em geral, certas características do ambiente amostrado (Rosenberg & Resh, 1982), contendo material disponibilizado para colonização por organismos bentônicos, assim como perfurações imitando o espaço intersticial, além da área de superfície já disponível (Carvalho & Uieda 2004). Tais características são visíveis no tipo de matéria - prima do substrato artificial confeccionado, no caso, a bucha vegetal (Luffa cylindrica).

CONCLUSÃO

Não foi possível inferir se os imaturos de Trichoptera têm preferência em colonizar substratos artificiais devido à seletividade dos substratos ou porque naturalmente ocorrem em maior abundância no sistema estudado, entretanto funcionam como um previsor da seletividade por diferentes taxa de macroinvertebrados aquáticos.

REFERÊNCIAS

Allan, J. D. 1995. Stream Ecology: structure and function of running waters. In: Chapman and Hall (Ed). London. 388 p.

Bispo, P. C. & L. G. Oliveira. 1998. Distribuição espacial de insetos aquáticos (Ephemeroptera, Plecoptera, Trichoptera) em córregos de cerrado do Parque Ecológico de Goiânia, Estado de Goiás, p. 175 - 189. In: Nessimian, J. L. & A. L. Carvalho (Eds). Ecologia de insetos aquáticos. Rio de Janeiro, PPGE - UFRJ, Series Oecologia Brasiliensis, p. 5:309.

Carvalho, E. M. & V. S. Uieda. 2004. Colonização por Macroinvertebrados Bentônicos em Substrato Artificial e Natural em um Riacho da Serra de Itatinga, São Paulo, Brasil. Curitiba, PR: Revista Brasileira de Zoologia, v. 21, n.2, p. 287 - 294.

Costa, C. S. I. & C. E. Simonka. 2006. Insetos imaturos: metamorfose e identificação. Ribeirão Preto, S.P. In: Holos (Ed), 249 p.

Hauer, F. R. & V. H. Resh. 1996. Benthic macroinvertebrates, p. 339 - 369. In: F.R. Hauer & G.A. Lamberti (Eds). Stream ecology. San Diego, Academic Press, 674 p. Hynes, H. B. N., 1970. The ecology of running waters. 3^a ed, Canada. In: Toronto Press (Ed), 555 p.

Merritt, R. W. & K. W. Cummins.1996. An introduction to the aquatic insects of North America, Third ed., In: Kendall & Hunt Publishing Co., Dubuque, IA, 862 p.

Oliveira, L. G. & C. G. Fröehlich. 1996. Natural hystory of three Hydropsychidae (Trichoptera, Insecta) in a "Cerrado" stream from Notheastern São Paulo, Brazil. Revista brasileira de Zoologia, v.13, n.3. 755 - 762 p.

Rosemberg, D. M. & V. H. Resh. 1982. The use of artificial substrates in the study of freshwater benthic macroinvertebrates. In: Cairns Jr., J. (Ed.). Artificial substrates. Ann Arbor: Ann Arbor Science/Butterworth Group, p.175 - 235.

Rosenberg, D. M. & V. H. Resh. 1993. Freshwater biomonitoring and benthic macroinvertebrates. In: Chapman and Hall (Ed), New York, 488p.

Ross, H. H. 1967. Aquatic insects and ecological problems. Bull. Ent. Soc. Am. v.13. p. 112 - 113.

Silveira, M. P. & Queiroz, J. F. de. 2006. Uso de coletores com substrato artificial para monitoramento biológico de qualidade de água. Embrapa Meio Ambiente, Setembro/2006, Jaguariúna/SP, ISSN 1516 - 8638 p. 1 - 5 Comunicado Técnico n^{0} 39.

Takeda, A. M., Shimizu, G. Y. & Higuti, J. 1997. Variações espaço - temporais da

comunidade zoobêntica , 157 - 177. In: Vazzoler, A. de M. , A. A. ; Agostinho, A. A.;

Hahn N. S. (Eds) Planície de Inundação do Alto Rio Paraná. Aspectos Físicos,

biológicos e socioeconômicos. EDUEM, NUPELIA, Maringá, 460 p.

Uieda, V. S. & Gajardo, I. C. S. M. 1996. Macroinvertebrados perifíticos encontrados em Poções e Corredeiras de um Riacho. Naturalia, v. 21, p. 31 - 47.

Volkmer - Ribeiro, C., Guadagnin, D. L., de Rosa - Barbosa R., Silva, M. M., Drügg - Hahn, S., Lopes - Pitoni, V. L., Gastal, H. A. de O., Barros, M. P., & Demaman, L. V. 2004. A polyethylenetherephtalate (PET) device for sampling freshwater benthic macroinvertebrates. Brazilian Journal Biology, v. 64, n. 3A, p. 531 - 541.

Wiggins, G. B. 1996. Trichoptera families, p.309 - 349. In: R. W. Merritt & K. W. Cummuns (Eds), An introduction to the aquatic insects of North America, 862 p.